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Abstract—As the cost per bit of NAND flash memory devices rapidly decreases, NAND-flash-based Solid-State Disks (SSDs) are

replacing Hard Disk Drives (HDDs) used in a wide spectrum of consumer computing devices. Although typical SSDs can deliver higher

performances than HDDs can, the full capabilities of SSDs are currently not exploited in most systems. This is because an SSD is

interfaced with its host system using the architectures and interface protocols designed for HDDs, due to compatibility issues. Given

the pace at which the stand-alone performance of SSDs improves, the performance loss of SSDs due to the legacy interface and

system architecture will soon become intolerable. To address this issue, we propose several architectural choices to fully exploit the

performance of SSDs used in consumer PC architectures. More specifically, we explore its interface scheme, and data transfer

concurrency with the change of the conventional PC architecture if necessary. We evaluated the performance of the architectural

choices by prototyping them with SystemC. The experimental results guide us how to trade off the performance enhancement and the

change of the PC architecture. The performance improvement was maximized by 2.67 times when the PC architecture is changed to

support a dual-port SSD connected to the North Bridge via the Double-Data Rate (DDR) interface in real trace environments.

Index Terms—Solid-State Disk (SSD), NAND flash memory, dual-port DRAM, North Bridge, direct path.
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1 INTRODUCTION

HARD Disk Drives (HDDs) have been widely used as mass
storage devices for the last several decades in many

electronic devices including PCs. Recently, a breakthrough in
technology introduced a light and small electronic device
called a Solid-State Disk (SSD) as an alternative mass storage
device. An SSD consists of nonvolatile memory elements (i.e.,
NAND flash memory) and a controller that is in charge of
data management and communication with the host ma-
chine. SSDs have several superior properties such as small
form factor, light weight, low power consumption, and shock
resistance compared to HDDs which comprise of platters,
heads, spindle motors, and other mechanical moving parts.
SSDs are thus more advantageous for harsh and rugged
environments, such as in military and aerospace applications,
since SSDs are fully electronically operated. Nevertheless, the
biggest obstacle to deploy SSDs widely is the higher bit cost
than that of HDDs. However, as the density of NAND flash
memory has doubled, on average, every 12 month, it is

expected that SSD bit cost will rapidly decrease and that SSDs
will thus lead the massive storage market in the near future.
According to International Data Corporation (IDC), the price
gap between 128 GB SSD and the 120 GB HDD will keep
narrowing, and eventually become negligible in 2012 [27].

Such cost reduction will accelerate the adoption of SSDs in
many consumer electronics devices when the benefits of
using SSDs are maximized. Among the various benefits of
SSDs, the performance factor is currently receiving the
largest attention, since the IO performance gap has become
severe1 [26]. Hence, slow second mass storages have become
a major performance bottleneck of high-performance com-
puting machines. The gap will become even severer in the
near future due to the appearance of multicore- and many-
core-based parallel computers.

Especially, we select PCs as our target architecture, since
PCs account for the largest share in the mass storage device
market. For enhancing the conventional PC architecture, we
explore the PC architecture in two aspects—host interface
scheme and data transfer concurrency. Also, we can define
the host interface scheme by two parameters—location and
interface protocol.

First, the location implies the place to which an SSD is
connected. In the conventional architecture, an HDD is
connected to a chipset called South Bridge that is designed
for low-speed peripherals. However, SSDs are usually much
faster than HDDs, hence, the South Bridge may not be the
best place to attach an SSD. Second, the interface protocol
means a communication protocol between the host machine
(PC, in our case) and the SSD used. Currently available SSDs
inherit the interface protocols for HDDs, such as Parallel
Advanced Technology Attachment (PATA) and Serial ATA
(SATA). PATA or SATA may provide a sufficient bandwidth
to HDDs, but this is questionable for SSDs, since they are
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1. According to Intel’s measurement in 2006, CPU operating frequency
has been improved by 30 times for the last decade, while HDD latency has
been enhanced by 1.3 times for the same period.
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typically much faster than HDDs. Added to this, finally, we
consider the data transfer concurrency to minimize the
conflicts between CPU-to-memory accesses and memory-to-
SSD accesses, which can critically degrade the system
performance. For this purpose, we propose a PC architecture
that uses dual-port DRAM. In this architecture, one of the
two DRAM ports is directly connected to the SSD which also
has two ports.

Among above-mentioned aspects, we have addressed a
PC architecture exploring the host interface scheme (loca-
tion and interface protocol) in [1]. More specifically, we
proposed a PC architecture equipped with an SSD con-
nected to North Bridge rather than South Bridge through
DDR DRAM interface in [1]. Even though it is the first
work to address the PC architecture exploration for fully
exploiting SSD performance, it lacks some other aspects
such as concurrency. In this paper, we extend our previous
work by considering the concurrency in PC architecture
exploration. Furthermore, we analyze not only the impact of
individual enhancements by each of the above three factors,
but also their combined effects.

The remainder of this paper is organized as follows: In
Section 2, we summarize the previous works related to
SSDs from architecture perspective. In Section 3, we present
the internal architecture of SSDs and the conventional
PC architecture that uses SSDs as preliminaries. Sections 4
and 5 address the details of proposed three different
PC architectures with qualitative analysis. Finally, we show
our experimental results in Section 6, followed by conclu-
sion in Section 7.

2 RELATED WORKS

Many of architectural works for SSDs are mainly related to
the internal architecture for improving the performance of
an SSD itself and only a few works studied the interaction
between the system and an SSD to maximally exploit the
SSD. In this section, we first briefly review the work related
to the SSD internal architecture, and then summarize the
works from the host architecture perspective.

One of major approaches to increase the performance of
an SSD is increasing the parallelism. In [2], Chang and Kuo
proposed an adaptive striping architecture to introduce
I/O parallelism by using a hot-cold identification mechan-
ism. In [7], Kang et al. proposed a multichannel SSD
controller to increase I/O parallelism and exploited the
parallelism by use of traditional throughput increasing
techniques such as striping, interleaving, and pipelining.
Similarly, multichannel and way interleaving schemes were
proposed for increasing data throughput in [6]. Kim et al.
presented an architecture exploration methodology for
NAND flash storage to explore a wide design space
including channel numbers using a QEA algorithm in
[10]. Also, in [5], Min and Nam introduced an improved
NAND flash controller architecture that places a data path
between the host and NAND flash memory interfaces
which enables the concurrent execution of data transfer and
control operations. The HyperLink NAND Flash Architecture
is proposed in [9], which has ring topology interface and
multiple independent banks for high-performance SSD.

On the other hand, some other works focused on
exploiting memory hierarchy. Lee et al. [4] proposed a
new NAND flash memory package with a smart buffer
cache that enhances the exploitation of spatial and temporal
localities to achieve high performance and low power

consumption. Also, an energy-aware demand paging
method was presented in [3] to minimize the number of
write or erase operations.

In addition, some approaches proposed to adopt hybrid
nonvolatile memory array to trade off the performance and
cost. Chang et al. proposed an SSD architecture which
combines multilevel cell (MLC) flash and single-level cell
(SLC) flash [8]. Yoon et al. proposed an SSD architecture
which consists of FRAM and NAND flash, where metadata
is maintained in a small FRAM to provide high performance
[11]. In [12], Kim et al. proposed a hybrid storage architecture
in which memory array is the combination of PRAM and
NAND flash to increase its performance and lifetime.

While the aforementioned studies focused on the internal
SSD architecture itself, there has been less attention to the
interaction between SSD and its host machine, which may be
crucial for enhancing the overall system performance. Only
a few works addressed the overall system performance
when an SSD is employed. One well-known approach is
Robson Architecture, where a nonvolatile memory (NAND
flash) layer is introduced as a cache of SSDs or HDDs to
reduce data transfer time and power consumption [13]. Also,
a high-performance SSD has been released in the market
[14]. The SSD adopts PCI-Express interface which provides
much higher bandwidth compared to the traditional slow
interfaces such as PATA and SATA, hence, it resolves the
performance bottleneck issue due to the slow host interface.
Recently, several works focused on the high-performance
server systems. In [15], Lee et al. showed the case study of
NAND-flash-based SSD in enterprise server systems.
Kgil et al. [16] presented NAND-flash-based disk cache
architecture as well as programmable NAND flash con-
troller in server platforms. In [17], several hundreds of
NAND-flash-based storage nodes were plugged into an
ethernet-style backplane to build clusters for data-intensive
applications.

To the best of the authors’ knowledge, none of previous
work addressed the performance issue of PC architecture
with an SSD except our previous work in [1]. The work in
this paper further extends to achieve higher performance in
PCs by exploring more architectural choices.

3 PRELIMINARIES

In this section, we describe the internal architecture of a
typical SSD unit and the conventional PC architecture that
uses SSDs. Although both architectures presented here can
differ depending on each vendor’s design, the basic
architectures do not differ much from one to another.

3.1 Internal Architecture of SSD

A typical SSD internal architecture is shown in Fig. 1. A
processor manages the overall system behavior and the
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Fig. 1. Internal architecture of SSD.



software called Flash Translation Layer (FTL) runs on it for
wear-leveling. By wear-leveling, a logical address in the
host machine is translated into a physical address in
NAND flash memory. This is to ensure that all flash cells
are written uniformly, since the lifetime of flash cells is
directly related to write frequencies. It is known that SLC-
type NAND flash cells die after 100,000 writes. The lifetime
of MLC-type NAND flash cells is 10 times less than that of
the SLC-type NAND flash cells. Also, its access time is
much longer than that of SLC-type flash cells. Hence, the
NAND flash interface supports multiple channels and ways
to increase parallel bandwidths and to hide flash memory’s
program latency. The cache buffer in the diagram utilizes
DRAM devices, and the host interface is the communication
path between the host and the SSD.

3.2 Conventional PC Architecture with SSD

The block diagram of a conventional PC architecture with
an SSD is shown in Fig. 2. In general, the conventional PC
architecture has two bridges for peripheral devices—North
Bridge and South Bridge. The North Bridge allows the CPU
to access high-speed peripherals, such as DRAM and video
adapters, while the South Bridge manages relatively low-
speed peripherals, such as SSDs (HDDs), USB, and LAN.

In this architecture, our focus is on the SSD access that
occurs when CPU reads (writes) data from (to) memory
due to a page fault. If a page fault occurs during a read
operation, a victim page is selected from the main memory
(DRAM) according to the virtual page management policy,
and the victim page is written to the SSD by the DMA
WRITE command issued from CPU. The required new page
is then loaded into the main memory by the DMA READ
command issued from CPU. In case of a write operation,
CPU issues a DMA WRITE command only when the victim
page is dirty if the write-back policy is employed in the
virtual page management scheme. On the other hand, every
write operation incurs DMA WRITE if the virtual page
management scheme uses the write-through policy. In this
work, we consider only the write-back policy, which is more
widely used.

More details of DMA WRITE and DMA READ are
depicted in Fig. 3. The suboperations used in this figure are

listed in Table 1. Note that a large-size data block is
packetized and transferred between DRAM and SSD as
many times as the number of packets. The packet transfer is
composed of two steps. The first step is the header transfer
and the second step is the payload (or data) transfer. The
header information is used to access the Physical Region
Descriptor (PRD) table in DRAM (�B ), while the payload
transfer corresponds to suboperation �E .

Fig. 3a shows a DMA WRITE transfer between main
memory (DRAM) and SSD. First, the software used issues a
DMA WRITE command to the SATA controller in the South
Bridge (�A ). The SATA controller then fetches the starting
address and size of the data to be transferred from the
PRD table in DRAM (�B ). According to the DMA transfer
information, the DMA in SATA controller reads data from
the DRAM (�E ) and then, the data pass through the
SSD interface (�D ) and are delivered to the SSD (�C ). The
steps from �B to �C are repeated until the entire data is
completely transferred. At the end of the DMA transfer the
SSD signals an interrupt and then the transfer is completed
(�F ). Note that the DMA WRITE is performed in a
consecutive manner. More precisely, when there are two
consecutive DMA WRITEs, the second DMA WRITE is
started only after the first DMA WRITE completely writes the
data to the NAND flash memories in the SSD for protecting
write failure.

DMA READ transfer sequence is also shown in Fig. 3b.
After a DMA READ command is issued by CPU, the DMA
in SATA controller requests data to the SSD (�A ). As soon as
the packet header including data ID arrives at the DMA, the
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Fig. 2. Conventional PC architecture with SSD.

Fig. 3. DMA transfers of conventional PC architecture. (a) Conventional
DMA WRITE (consecutive). (b) Conventional DMA READ (pipelined).

TABLE 1
DMA Transfer Time



SATA controller fetches the PRD table in the DRAM (�B ). At
the same time, the payload of the packet is transferred to
DMA through the SSD interface (�C ,�D ). Then, the payload
is transferred to DRAM through the South Bridge and the
North Bridge (�E ). During the system transfer (�E ), the next
packet is transferred from SSD to the DMA in a pipelined
manner. Finally, SSD signals an interrupt, and then the
transfer is completed at the end of the DMA transfer (�F ).

3.3 Limitations of Conventional Architecture

The SSD in conventional PC architecture simply replaces a
HDD while keeping the same interface protocol to maintain
the compatibility. This architecture, however, is not suitable
for providing higher performance for the following reasons:
First, the maximum bandwidths of PATA and SATA2 are
only 133 and 300 MB/s, respectively. The interface may
become a bottleneck due to its insufficient bandwidth as the
performance of SSDs gets higher. Second, every access to
SSD has to pass through the North Bridge and the South
Bridge, meaning that a single data transfer request for SSD
needs to be arbitrated twice. Last, a page fault during read
operations serializes DMA WRITE and DMA READ com-
mands due to a limited communication means between
DRAM and SSD. To achieve higher performance by resol-
ving these issues, several architectural choices will be
discussed the Section 5.

4 TECHNIQUES FOR ARCHITECTURE EXPLORATION

In this section, we describe two techniques to overcome the
limitations of the conventional architecture mentioned in
Section 3.3. Section 4.1 presents the first technique to resolve
the location and interface protocol issues. The second
technique, which is to provide data transfer concurrency,
is described in Section 4.2.

4.1 SSD with DDR DRAM Interface

The first technique we describe is to enable SSDs to
communicate outside using the DDR DRAM interface for
higher performance [1]. A typical SSD cannot be connected
to the host via the DDR DRAM interface. This is because the
interface mechanism DRAM devices use is different from
that normal SSDs use. Typical DDR DRAMs have a fixed
Column Address Strobe (CAS) latency, which is the time to
get ready requested output data in read mode. In contrast,
SSDs do not have a constant response time due to the
internal cache buffer used for reducing response time.

To resolve this discrepancy, [1] exploited DQS, a feedback
clock for supporting synchronization in high-speed DRAMs.
DQS is defined in the DDR DRAM standard protocol (JEDEC,
[18]) and can be found in most DDR DRAMS available in the
market. Usual DDR DRAMs issue DQS in sync with CAS
when the data requested by the host is ready. In this scheme,
an SSD asserts DQS when the requested data is ready either
from the internal NAND devices or from the inside cache,
rather than synching DQS with CAS. The timing diagrams of
this DQS-based signaling scheme for a cache miss and a cache
hit are shown in Figs. 4a and 4b, respectively.

In order to incorporate this technique into the conven-
tional architecture, the host memory controller needs to be
designed to support the DQS scheme, which is not against
the standard DDR DRAM interface.

Note that we do not intend to change the function of SSD,
but to keep it identical to the conventional HDD over the all
proposed architectures to be discussed. Hence, the data
access unit of SSD is also the same as that of HDD. In modern
PC architecture, the second mass storages such as SSD and
HDD are accessed in the unit of virtual page size which is
typically a few Kbytes, thus the transaction between the host
machine and SSD will take place in the unit of virtual page
size. (Also, it is possible to divide a single large transaction
into several small transactions depending on the implemen-
tation.) In other words, we only need to consider the block-
level data transfers for SSDs.

4.2 Direct Path between Main Memory and SSD

The second technique is using a direct path between main
memory and an SSD. This opens up another communication
channel between them in addition to the conventional
channel and can result in higher performance by diversifying
memory access traffics, especially in memory-intensive
applications. In order to implement this idea, we need a
dual-port DRAM device and a dual-port SSD in addition to a
DDR DRAM controller that should be embedded in the SSD
to transfer data over the direct path. In this dual-port SSD, one
port is connected to either the SATA controller in the South
Bridge or the DDR DRAM controller in the North Bridge, and
the other port is directly connected to main memory.

4.2.1 Dual-Port DRAM

OneDRAM [19], [20], a recently announced dual-port
DRAM, may be a good candidate for the dual-port DRAM
unit needed in the proposed technique. OneDRAM allows
two separate controllers to access each memory bank in the
device. Due to a shared memory bank, it is also possible to
exchange data much faster between the two controllers.
However, OneDRAM can incur excessive synchronization
overhead because there is only one shared bank, and a
hardware semaphore should be acquired in order to access
this shared region.

To alleviate this limitation, we introduce a new synchro-
nization scheme as depicted in Fig. 5. A dual-port DRAM
that follows this timing diagram is compatible with our
direct path scheme. When two memory controllers (e.g., one
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Fig. 4. Timing diagram of SSD with DDR DRAM interface [1]. (a) Cache
buffer read miss. (b) Cache buffer read hit.



connected to the North Bridge and the other to the SSD)
give commands to an identical bank simultaneously, only
one command can be processed. To schedule these
commands properly, each bank has its own INT (Interrupt)
pin that informs both memory controllers of the state (busy
or not) of this bank. When a certain bank is being accessed
by both ports at the same time, an exclusive access per port
is performed in a round-robin manner. More precisely,
when one port (e.g., Port A in Fig. 5) accesses a certain bank,
the INT signal of the other port (Port B) is driven HIGH
continuously to notify the memory controller that this bank
is now busy. After the data transfer to/from the bank is over,
the INT signal goes to LOW to inform the memory controller
that the bank is now available, and then the waiting port
(Port B) gets access permission. The memory controller
connected to each port should be designed to receive the
INT signal.

4.2.2 Dual-Port SSD

The aim of a dual-port SSD is to increase the throughput of an
SSD by allowing concurrent transactions. The interface
scheme of each SSD port can be SATA or DRAM interface
depending on the target architectures which are discussed in
Section 5. In order to allow the concurrent transactions from
two SSD ports, they must be free from the data hazard
conditions. In this section, we assume that the two transac-
tions are independent to each other, since the Operating
System (OS) packs two independent transactions, as dis-
cussed in Section 4.2.3. In order to access an SSD concur-
rently, the cache buffer in the SSD should also be
concurrently accessible. Therefore, we propose to use dual-
port DRAM as the cache buffer in an SSD. The behavior of a
dual-port DRAM is already discussed in Section 4.2.1.

Even though two concurrent transactions are indepen-
dent from the data dependency perspective, they may still
cause conflicts to access shared resources, such as channels
and DRAM ports of the cache buffer. Fig. 6a shows how the
cache buffer controller manages the resource conflict of two
concurrent transactions.2 First, there is a Cache-Hit Detector
dedicated to each SSD port to check whether the requested
data can be accessed from the cache buffer. For instance, if
the requested data from the upper SSD port (PORT 0) is
found from the cache buffer, the Cache-Hit Detector 0 raises
HIT0 to “1.” HIT0 becomes “0,” if the cache miss is detected
by the Cache-Hit Detector 0. The Cache-Hit Detector 1 also

behaves in the same manner for the lower SSD port (PORT 1).
Depending on the decisions of two Cache-Hit Detectors, there
are four possible combinations of HIT0 and HIT1. If HIT0
(HIT1) is “1” and HIT1 (HIT0) is “0,” there will be no resource
conflict, since the upper (lower) SSD port will access the
cache buffer and the lower (upper) SSD port will access the
channels to NAND Flash memories. If both signals are zeros
or ones, however, two SSD ports will attempt to concurrently
access the DRAM ports or channels. To resolve such
contention, the proposed cache buffer controller includes
DRAM Port Allocator and Channel Allocator.

Since there are two SSD ports and two DRAM ports, the
upper SSD port is dedicated to DRAM port 0 and the lower
SSD port is dedicated to DRAM port 1. The major role of
DRAM Port Allocator is to appropriately manage the
requests to the dual-port DRAM, according to the signal
statuses of INT0 and INT1 for avoiding bank conflict. For
instance, if INT0 is in busy state, it means that the request
through DRAM port 1 is already accessing the bank which
is also the target of the request through DRAM port 0. In
this case, DRAM Port Allocator delays the access through
DRAM port 0 until Bank Arbiter in a dual-port DRAM raises
INT0 to “1” (ready-state), when the request through DRAM
port 1 completes the target bank access. In other words, it is
allowed to access different banks simultaneously, but
different regions of a bank cannot be accessed at the same
time in our scheme. As shown in Fig. 6b, when there are
two transactions (i.e., write and read transactions), each
transaction does not access the bank which is being
accessed by the other transaction in an interleaved fashion.

On the other hand, Channel Allocator behaves in a
somewhat different way, since the number of channels does
not always match to the number of SSD ports. Like the
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Fig. 5. Timing diagram of dual-port DRAM.

Fig. 6. Dual-port SSD. (a) Architecture of dual-port SSD. (b) Transaction
process of dual-port SSD.

2. We only show the important control signals in Fig. 6a for simplicity,
but the data lines, address lines, and other control lines also follow the
specified lines.



conventional SSD, the logical address given by an SSD port is
translated into a physical address by the FTL running on the
processor and a channel corresponding to the physical
address is allocated to the request. When both requests from
two SSD ports should be allocated to the same channel,
Channel Allocator arbitrates these requests in a round-robin
manner. Also, when the channel corresponding to the
physical address of a request from an SSD port is already
in use by the request from the other SSD port, the request is
pended until the completion of the current use of the channel.

4.2.3 DMA Command Packing

We explain how to exploit the concurrency provided by the
dual channel between main memory and an SSD. In the
conventional architecture, when a DMA transfer is required,
OS generates a single DMA command. Only after it is finished
completely, the next DMA command can be generated. In
contrast, in the dual-port SSD architecture we propose, OS
can pack a pair of DMA commands into one, thereby
exploiting the concurrency existing in the dual path. This
packing of DMA commands occurs only when different main
memory and SSD regions are accessed. Otherwise, DMA
commands are issued one by one just as the conventional
scheme, in order to guarantee data consistency. Fig. 7 shows a
flowchart for the DMA packing procedure. OS manages a
queue for storing DMA commands and checks if there exists
any DMA command in the queue. If there are two compatible
(i.e., accessing different regions) DMA commands waiting in
the queue, they are packed into one. If there is a single DMA
command and no other DMA command comes in within a
time-out limit, the command in the queue is issued as it is.

5 ARCHITECTURE EXPLORATION

Depending upon the SSD interface location and the existence
of a direct path between main memory and an SSD, four
architectural combinations are possible as listed in Table 2.
The conventional architecture explained in Section 3 corre-
sponds to one of these four architectures. Based upon the
techniques described in Section 4, we explain each of the

remaining three architectures, which we call North Bridge

Single Port (NBSP) Architecture, South Bridge Dual Port

(SBDP) Architecture, and North Bridge Dual Port (NBDP)

Architecture. Table 2 also includes the information on what

needs to be added into the conventional architecture in order

to realize NBSP, SBDP, and NBDP architectures.
Of note is that we assume the DRAM interface exists in

the North Bridge and the SATA controller exists in the

South Bridge, as is the case with virtually all systems in the

market. Placing the DRAM interface in the South Bridge

and the SATA controller in the North Bridge is thus not

considered.
The limitations of the proposed architectures include that

they require some modifications to the existing PC architec-

ture as summarized in Table 2. For instance, to exploit NBSP

architecture, the PC DRAM controller needs to be equipped

with DMA as well as it should be able to understand the

proposed DQS scheme.

5.1 NBSP Architecture

Fig. 8 shows the block diagram of NBSP Architecture [1]. In

this architecture, an SSD is attached to the North Bridge

KIM ET AL.: ARCHITECTURE EXPLORATION OF HIGH-PERFORMANCE PCS WITH A SOLID-STATE DISK 883

Fig. 7. Procedure for DMA command packing.

TABLE 2
Four Architectural Choices

Fig. 8. NBSP architecture.



using the DDR DRAM interface described in Section 4.1. In
addition, a DMA controller is integrated in the North Bridge,
unlike the conventional architecture. The major advantages
of NBSP Architecture include the following: First, the
DDR DRAM interface can provide a higher bandwidth
(e.g., the bandwidth of a DDR2-800 module is 6,400 MB/s)
than the conventional SATA interface. Second, the South
Bridge is eliminated in the communication path between
CPU and the SSD, thus reducing the arbitration overhead.

Due to this elimination, the DMA transfer protocol of the
conventional architecture must be changed. OS now issues
a DMA command to the DRAM controller in the North
Bridge not to the SATA controller in the South Bridge. PRD
fetching and the data transfer between DRAM and the SSD
are also performed by the DMA controller in the DRAM
controller. The rest of the DMA transfer steps are identical
to the read and write modes in the conventional architec-
ture as described in Section 3. The new transfer protocols
are shown in Figs. 9a and 9b.

5.2 SBDP Architecture

In this architecture, an SSD is attached to the South Bridge as
the conventional architecture, but there exists a direct path
between the SSD and main memory, as shown in Fig. 10.

Architecture SBDP can provide some performance improve-
ments in multitasking environments. For instance, when a
page fault occurs, write and read operations from main

memory to the SSD should be performed consecutively. In
SBDP Architecture, write and read operations can be
performed virtually in a concurrent fashion, since the second

operation can start immediately without waiting for the first
operation to be finished.

Note that the SSD used in SBDP should have a DMA
controller because of the need to access main memory

directly. By handling two DMA controllers in the SSD and
the SATA controller, data can be transferred to/from
different regions at the same time, and multitasking will thus

be supported effectively.
For simultaneous DMA operations, we should consider

the data consistency issue. When two DMA controllers access
different main memory and SSD regions, there is no

consistency issue. In contrast, when the same main memory
region is accessed by two DMA controllers, the data
consistency problem may arise (e.g., when a page fault occurs

by the OS virtual memory management). If this is the case, a
victim page is saved to the SSD, and the new, valid page from
the SSD is read to the same main memory region. To maintain
data consistency, the victim page saving should precede the

transfer of the new page to the main memory. That is, by
making the DMA controller in the SSD access main memory
earlier than the DMA controller in the SATA controller does,

data consistency can be guaranteed.
To process two consecutive DMA commands that can be

concurrently executed, the following steps are, therefore,
needed as indicated in Fig. 10. �1 CPU gives a combined

command which consists of two DMA commands to the
DMA controller in the SATA controller (DMA1).�2 The first
command is transferred to the DMA controller in the SSD

(DMA2), while DMA1 controller performs the second
command. This is to follow the policy to enforce data
consistency as described above.
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Fig. 9. DMA transfers of NBSP architecture. (a) DMA WRITE
(consecutive). (b) DMA READ (pipelined).

Fig. 10. SBDP architecture.



5.3 NBDP Architecture

In this architecture, an SSD is connected to the North Bridge,
and there is a direct path between the SSD and main memory,
as shown in Fig. 11. There are two DMA controllers, one in
the North Bridge and the other in the SSD. By controlling
these two controllers, two consecutive DMA commands can
be executed almost concurrently by the same mechanism as
used in SBDP Architecture. Of note in this architecture is how
an interrupt operation works when DMA commands in the
SSD are completed. Since the interface point of the SSD is the
DDR DRAM, there is no way to transfer the interrupt to the
North Bridge directly. To address this problem, an interrupt
pin which signals the completion of DMA transfers should
be assigned to the interrupt controller in a PC system.

6 EXPERIMENTAL RESULTS

We implemented four transaction-level PC architectures
with SystemC [21] to compare their performances. The first
one is conventional PC architecture with SSD as shown in
Fig. 2, and the second one is enhanced PC architecture with
DDR DRAM interfaced SSD (NBSP Architecture) as shown

in Fig. 8. The others are conventional PC architecture with
direct path (SBDP Architecture) and enhanced PC archi-
tecture with DDR DRAM interfaced SSD and direct path
(NBDP Architecture) in Figs. 10 and 11, respectively.

The PC system modeling was carried out based on
Intel’s 965 chipset (North Bridge) and ICH8 (South Bridge)
specifications in [22] and [23], respectively. Also, the SSD
modeling referred to the SATA specification [24] and an SSD
datasheet of Samsung Electronics [25]. To show the peak
performance of each interface, the SATA bandwidth was set
to 300 MB/s and that of the DDR DRAM was set to 6,400 MB/s
(DDR2-800). In the first set of experiments, we measured the
performance of DMA operations of all four architectures
when a single page is transferred between DRAM and an SSD
in Sections 6.1.1 (DMA READ) and 6.1.2 (DMA WRITE). In the
second set of experiments, we compared four architectures
when they handle page-fault occurrences (Section 6.2). In this
case, two pages are transferred at the same time—the victim
page is moved from DRAM to SSD and vice versa for the
required page. In the next set of experiments, we consider a
scenario in which the PC downloads streaming data through
the network (Section 6.3) to appreciate their performance
when a large size of data is sequentially written to an SSD.
Finally, we conducted the experiments for four architectures
with the real traces collected from a real PC to show their
effectiveness in real situations.

6.1 Performance Measure in Single Page Transfer

6.1.1 DMA READ Operation

We carried out the experiments on 64 KB DMA READ
transfers by simulating the four architectures. The data
response time was measured for two extreme DMA read
cases. The first case always causes a cache miss for every
access to an SSD, as shown in Fig. 12a, while the other case
represents 100 percent cache hit, as shown in Fig. 13. In
NBSP Architecture, for the 100 percent cache read miss case,
the performance improvement ratio is about 1.31, while it is
8.70 in case of 100 percent cache read hit. This is because a
data access to the cache buffer is much faster than NAND
flash in the best case (100 percent of cache read hit). Note
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Fig. 11. NBDP architecture.

Fig. 12. DMA READ cache buffer read miss. (a) DMA READ transfer time. (b) Transfer time excluding SSD internal.



that the performance improvement of this architecture will
become larger as the performance of an SSD itself is
increasing, since the internal latency of the SSD accounts for
most of the overall data transfer time. Such a claim is clearly
supported by Fig. 12b, in which we analyzed DMA READ
transfer time excluding the internal latency of the SSD. The
performance improvement ratio of NBSP Architecture is
about 6.76 in cache read miss. On the other hand, the
improvement ratio is almost identical in case of 100 percent
cache read hit (Figs. 13a and 13b), since its internal latency
is negligible compared to other factors.

In case of SBDP and NBDP Architectures, there were
also performance improvements compared with the con-
ventional architecture, since these architectures use a direct
path and the conventional data path at the same time. As
shown in Figs. 12a and 13a, their performance improvement
ratios are 1.60 and 2.29 in 100 percent read miss, 2.13 and
28.56 in 100 percent read hit in SBDP and NBDP Architec-
tures, respectively. Notice that the SSD internal is reduced
when we change the interface scheme from the conventional
SATA to the proposed DRAM interface. The major reason
of such reduction is basically due to the elimination of
Cyclic Redundancy Check (CRC) [28] which is mandatory in
high-speed interfaces with small voltage swing such as
SATA for robustness.

In particular, the performance improvement ratio of
NBDP Architecture in cache read hit is much higher than
those of the other cases. The performance improvement
ratio of NBDP Architecture, 28.56, is about 3.28 times higher
than that of NBSP Architecture, 8.70. This is because the
direct path can transfer about two times more data than
North Bridge path in case of 100 percent cache read hit,

hence, the overall performance improvement ratio of
NBDP Architecture over NBSP Architecture becomes above
3. However, in case of cache read miss, this improvement is
partially eliminated by long SSD internal reads.

We also measured how our proposed schemes have an
effect on performance improvement in terms of the interface
improvement, South Bridge elimination and use of the
direct path. In NBSP Architecture, as shown in Table 3, the
South Bridge elimination and DDR DRAM interface schemes
contributed 1.89 and 98.11 percent, respectively, and the use
of direct path did not contribute when a 100 percent cache
read miss occurs. More specifically, since the reduction of the
transfer time (DMA command, PRD fetch, and system
transfer) by South Bridge elimination is hidden by the long
internal latency of the SSD, the improvement caused by
South Bridge elimination is marginal. On the contrary, when
a 100 percent cache read hit occurs, South Bridge elimination,
the DDR DRAM interface scheme, and the use of the direct
path contributed 27.48, 72.52, and 0 percent, respectively, as
shown in Table 4. In this case, since the SSD’s internal latency
is no longer large, the benefits caused by eliminating South
Bridge path are less hidden and take more effects.

In case of SBDP Architecture, the only contributor for the
performance improvement is the direct path scheme,
whereas all of three factors are fully utilized in NBDP
Architecture. Note that the contribution of a direct path
reaches up to 85.58 percent when a 100 percent cache miss
occurs. In other words, NBDP Architecture can largely
exploit the concurrency of data transfers. This is mainly due
to the page data layout originally designed for interleaving in
a single-port DRAM. The maximum performance improve-
ment ratio by use of a direct path is limited byNB, whereNB
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TABLE 3
Contribution Breakdown in DMA READ Miss

TABLE 4
Contribution Breakdown in DMA READ Hit

Fig. 13. DMA READ cache buffer read hit. (a) DMA READ transfer time. (b) Transfer time excluding SSD internal.



represents the number of banks in a dual-port DRAM. Even
though overall system performance becomes better when a
100 percent cache hit occurs, its impact is lessened, since the
SSD internal latency becomes much shorter and the other two
factors become equally important.

6.1.2 DMA WRITE Operation

We also carried out the experiments on 64 KB DMA WRITE
transfers by simulating the four architectures. As shown in
Fig. 14a, the performance improvement ratio of the archi-
tectures with DDR DRAM interface scheme (NBSP Archi-
tecture) is 1.59, which is greater than the performance
improvement ratio in DMA READ transfers with 100 percent
of cache miss. This is much the same as the great performance
improvement ratio by 25.47, when we exclude SSD’s internal
latency as shown in Fig. 14b. The result is closely linked to the
elimination of South Bridge in the NBSP Architecture. In
DMA WRITE, the data is fetched from the main memory and
then written to the NAND flash memories inside an SSD.
However, there is a big difference such that DMA WRITE
operations are performed in a consecutive fashion, whereas
the read operations are performed in a pipelined fashion
as mentioned in Section 3. In other words, thanks to its
sequential operational property, the elimination of South
Bridge is more beneficiary to DMA WRITE operations. In
case of SBDP and NBDP Architectures, there were perfor-
mance improvements compared to the conventional archi-
tecture by a factor of 1.83 and 2.75, respectively, due to the
same reason.

We also analyzed the contribution of the three factors as
we did for DMA READ operations. As shown in Table 5,
South Bridge elimination and DDR DRAM interface scheme

contributed 37.92 and 62.08 percent, respectively, in NBSP
Architecture. In SBDP Architecture, the use of the direct
path was the only contributor, while all three factors fully
contributed due to the same reason as mentioned in DMA
READ operation in NBDP Architecture.

6.2 Performance Measure in Page-Fault Occurrence

In this situation, two pages need to be transferred simulta-
neously in the opposite direction, and the architectures
with dual data paths (i.e., NBDP and SBDP) are expected to
outperform the other architectures. To verify this reasoning,
we analyzed a 16 KB page fault occurring in the four
architectures. As shown in Fig. 15a, the performance
improvement ratios of SBDP and NBDP Architectures are
1.74 and 2.37, respectively, with respect to the conventional
architecture. NBDP Architecture also outperforms the
NBSP Architecture by a factor of 1.72. (The performance
improvement ratio are somewhat less than two due to
internal overhead.)

We also measured how much contribution each of the
proposed techniques makes to the overall performance. As
shown in Table 6, the South Bridge elimination and the SSD
with DDR DRAM interface schemes contribute 57.77 and
42.23 percent, respectively, in NBSP Architecture. In NBDP
Architecture, all the proposed schemes are used in coopera-
tion and provide the highest performance among all the
architectures tested. In SBDP Architecture, the performance
boost is totally due to the use of the direct path, and SBDP is
not included in the table.

6.3 Performance Measure in Network Downloading

This is to analyze the situation in which multiple pages are

transferred to an SSD. In the conventional architecture, a

data packet received by a LAN controller is transferred to

main memory and then arrives at an SSD via the North and

South Bridges in order. Thus, the write operation to the SSD

is performed only after the read operation from the LAN

controller to main memory. However, SBDP and NBDP can

exhibit better performance using the dual data paths. While

an incoming data packet through the external network is

transferred to the main memory, the previous data packet is
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Fig. 14. DMA WRITE. (a) DMA WRITE transfer time. (b) Transfer time excluding SSD internal.

TABLE 5
Contribution Breakdown in DMA WRITE



delivered to the SSD through the direct path at the same

time. Hence, SBDP and NBDP need not wait until the

previously requested command is completed. Fig. 16a shows

the result obtained from an experiment on 16 KB data packet

transfers in the network downloading at 100 Mbps. SBDP

and NBDP show performance improvement ratios of 2.08

and 2.19, respectively, with respect to the conventional

architecture. Since the latency of a transfer from main

memory to an SSD is mostly hidden, while a LAN-to-main-

memory transfer is performed, the performance improve-

ments are nearly doubled. Table 7 shows how much

contribution each of the proposed techniques makes to the

overall performance. Because the communication between

main memory and the SSD occurs solely via the direct path

between them in SBDP and NBDP, the contribution of the

direct path scheme is most dominant in these architectures.

6.4 Performance Measure in Real Traces

To evaluate the performance of the four architectures

under real workloads, we utilized the real trace data

addressed in [2]. Table 8 lists more details of the traces we

used. Each trace was collected from emulating web-surfing

applications, e-mail sending/receiving, movie playing,

downloading, document typesetting, gaming, and other

applications on a PC.
The access patterns in these traces are more random

than those in the synthetic workloads used in the previous

set of experiments. Hence, the hit ratios of these traces
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Fig. 15. Page-fault occurrence. (a) Page-fault processing time. (b) Transfer time excluding SSD internal.

Fig. 16. Performance measure in network downloading. (a) Network downloading processing. (b) Transfer time excluding SSD internal.

TABLE 7
Contribution Breakdown in Network Downloading

TABLE 6
Contribution Breakdown in Page-Fault Occurrence



running on the conventional PC architecture were only
20.35, 19.32, 2.81, and 12.63 percent in Trace1, Trace2,
Trace3, and Trace4, respectively. Also, we found that there
is a correlation between the size of transfer and the hit
ratio: The larger the transfer size is, the lower the hit ratio
is. It means that the data transferred in a large chunk is
mostly used once, whereas small data chunks tend to be
reused. Even in this situation, NBDP stably shows about
2.6 times performance improvement over the conventional
architecture, as shown in Fig. 17. Similarly, NBSP and
SBDP run about 1.5 and 1.7 times faster than the
conventional architecture.

As shown in Table 9, all architectures showed the largest
improvement for Trace 2, which has the highest portion of
write transfers. On the other hand, they commonly showed
the least improvement for Trace 3, which has the smallest
portion of write transfers. One reason is that write
operations are benefitted more by eliminating the South
Bridge due to its nonpipelined operational nature, as
explained in Section 6.1. The direct path also accounts for
some fraction of such improvements. Namely, the latency of
the original data path is larger for writing, hence, the direct
path can exploit more parallelism in write transfers than in
read transfers. Therefore, SBDP shows the trend identical to
those of NBDP and NBSP, even though the impact is
relatively marginal.

To summarize, Table 9 shows the comprehensive
experimental results we obtained in terms of performance
improvement ratio.

7 CONCLUSION

In this paper, we proposed North Bridge interfaced SSD
and a direct path between main memory and the SSD. By

eliminating South Bridge path, arbitration overhead and
data transfer time were reduced between CPU and SSD. In
addition to that, the direct path provides a significant
performance improvement under the concurrent memory
access environment. By using above two techniques, we
propose several architectural choices (NBSP, SBDP, and
NBDP) to fully exploit the performance of SSDs used in
consumer PC architectures.

The experimental results guide us how to trade off the

performance enhancement and the change of PC architec-
ture. On the whole, NBDP Architecture outperformed other

architectures in the most of the cases. Especially, the

performance improvement was maximized by 2.67 times

in the NBDP Architecture for real workload. Also, the SBDP

Architecture can be a proper alternative in terms of trade-

off between the performance and compatibility. Even

though the internal latency of the SSD is still dominant

factor in data response time, we expect that our proposed
architectures with SSD provide significant performance

improvement in PC system by improving the internal

architecture of the SSD.
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